Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis.
نویسندگان
چکیده
Clinically significant atherosclerosis in the human aorta is most common in the infrarenal segment. This study was initiated to test the hypothesis that flowfield properties are closely related to the localization of plaques in this segment of the arterial system. Wall shear stress was calculated from magnetic resonance velocity measurements of pulsatile flow in an anatomically accurate model of the human abdominal aorta. The wall shear stress values were compared with intimal thickening from 15 post-mortem aortas measured by quantitative morphometry of histological cross sections obtained at standard locations. Wall shear stress oscillated in direction throughout most of the infrarenal aorta, most prominently in the distal region. The time-averaged mean wall shear stress (-1.7 to 1.4 dyn/cm2) was lowest near the posterior wall in this region. These hemodynamic parameters coincided with the locations of maximal intimal thickening. Statistical correlation between oscillatory shear and intimal thickness yielded r = 0.79, P < 0.00001. Low mean shear stresses correlated nearly as well (r = -0.75, P < 0.00005). Comparison of our data with surface maps of Sudan Red staining and early lesions as reported by others revealed similar conclusions. In contrast, pulse and maximum shear stresses did not correlate with plaque localization as has been shown for other sites of selective involvement by atherosclerosis (r < 0.345). Simulated exercise conditions markedly changed the magnitude and pattern of wall shear stress in the distal abdominal aorta. These results demonstrate that in the infrarenal aorta, regions of low mean and oscillating wall shear stresses are predisposed to the development of plaque while regions of relatively high wall shear stress tend to be spared.
منابع مشابه
Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملThe effect of turbulence model on predicting the development and progression of coronary artery atherosclerosis
A severe case of stenosis in coronary arteries results in turbulence in the blood flow which may lead to the formation or progression of atherosclerosis. This study investigated the turbulent blood flow in a coronary artery with rigid walls, as well as 80% single and double stenoses on blood flow. A finite element-based software package, ADINA 8.8, was employed to model the blood flow. The hemo...
متن کاملEffect of exercise on hemodynamic conditions in the abdominal aorta.
PURPOSE The beneficial effect of exercise in the retardation of the progression of cardiovascular disease is hypothesized to be caused, at least in part, by the elimination of adverse hemodynamic conditions, including flow recirculation and low wall shear stress. In vitro and in vivo investigations have provided qualitative and limited quantitative information on flow patterns in the abdominal ...
متن کاملComparison of oscillatory wall shear stress in the abdominal aorta of men and women: relationship to abdominal aortic aneurysm (AAA) development
Background Numerous animal and human studies have confirmed a relationship between inflammation, wall shear stress (WSS, the frictional force of fluid felt at a vessel wall) and vascular pathologies. These studies suggest the importance of WSS as a predictive factor in evaluating an individual’s risk of developing vascular disease. There have been several observational studies which indicate th...
متن کاملStatistical analysis of the association between rheological properties of blood and atherosclerosis
The aim of this study is to investigate the effects of non-Newtonian blood rheology models on the wall shear stress (WSS) distribution in a cohort of patients-specific coronary arteries. Twenty patients with diseased left anterior descending (LAD) coronary arteries (with varying degrees of stenosis severity from mild to severe) who underwent angiography and in-vivo pressure measurements were se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Atherosclerosis
دوره 110 2 شماره
صفحات -
تاریخ انتشار 1994